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Occurrence and fate of 45 pesticides and 40 pesticide degradates 
were investigated in four contrasting agricultural settings—in 
Maryland, Nebraska, California, and Washington. Primary 
crops included corn at all sites, soybeans in Maryland, orchards 
in California and Washington, and vineyards in Washington. 
Pesticides and pesticide degradates detected in water samples 
from all four areas were predominantly from two classes of 
herbicides—triazines and chloroacetanilides; insecticides and 
fungicides were not present in the shallow ground water. In most 
samples, pesticide degradates greatly exceeded the concentrations 
of parent pesticide. In samples from Nebraska, the parent pesticide 
atrazine [6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-
diamine] was about the same concentration as the degradate, but 
in samples from Maryland and California atrazine concentrations 
were substantially smaller than its degradate. Simazine [6-chloro-
N,N′-diethyl-1,3,5-triazine-2,4-diamine], the second most 
detected triazine, was detected in ground water from Maryland, 
California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-
6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely 
was detected without its degradates, and when they were detected 
in the same sample metolachlor always had smaller concentrations. 
Th e Root-Zone Water-Quality Model was used to examine 
the occurrence and fate of metolachlor at the Maryland site. 
Simulations accurately predicted which metolachlor degradate 
would be predominant in the unsaturated zone. In analyses of 
relations among redox indicators and pesticide variance, apparent 
age, concentrations of dissolved oxygen, and excess nitrogen gas 
(from denitrifi cation) were important indicators of the presence 
and concentration of pesticides in these ground water systems.
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Numerous studies over the past four decades have indicated that 

the downward and subsequent subsurface transport of pesticides 

applied at the land surface in agricultural areas can contribute to 

contamination of ground water by these compounds and their 

degradates (Barbash and Resek, 1996; Kalkhoff  et al., 1998; Bosch 

and Truman, 2002; Delin and Landon, 2002; Panno and Kelly, 2004; 

Postle et al., 2004; Gilliom et al., 2006; McMahon et al., 2006). Th e 

likelihood of detecting pesticides in ground water is controlled by 

myriad factors, including the intensity of pesticide application, the 

timing of applications relative to major recharge events, the amount 

and frequency of precipitation or irrigation, the depth to the water 

table, soil properties (e.g., permeability, available water capacity, 

organic carbon content), and land management practices such as the 

use of subsurface drains, irrigation, or conservation tillage (Barbash 

and Resek, 1996; Kolpin, 1997; Barbash et al., 1999; Kolpin et al., 

2002; Gilliom et al., 2006; Hancock et al., 2008). For pesticides that 

undergo transformation that is relatively rapid in comparison with 

the time scale of transport in the subsurface (i.e., above or below the 

water table), degradates—rather than the parent compound—may 

be the predominant form that reaches ground water in detectable 

concentrations (Kolpin et al., 1996, 1997; Kalkhoff  et al., 1998; 

Groschen et al., 2004; Scribner et al., 2005).

Th e rates of many pesticide transformations in the subsurface 

have been found to be largest within the root zone and diminish 

with depth. For photochemical reactions, the products of these 

transformations have been found to be more prevalent at the land 

surface than within the soil (Crespín et al., 2001). Similarly, the rates 

of biotransformation reactions generally are highest within surfi cial 

soils and decrease with increasing depth. Reductions in the rates of 

biotransformation reactions with depth are likely to be the result of 

depth-related decreases in microbial populations and the organic 

matter on which they feed (Ou et al., 1986; Veeh et al., 1996; Lars-

en et al., 2000; Accinelli et al., 2001; Vinther et al., 2001).

Th e relative rates at which pesticides, their degradates, and 

other solutes migrate through the subsurface are inversely related 

to their respective tendencies to sorb to soil and other geologic 

materials (Freeze and Cherry, 1979). For soils and sediments with 
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moderate to high levels of organic carbon—i.e., roughly 0.1% 

or more by weight (mass fraction of organic carbon in soil [f
oc
]; 

f
oc
 ≥ 0.001)—the relative tendencies of dissolved non-ionic sol-

utes to sorb to earth materials seem to be directly related to the 

affi  nities of the compounds for soil organic matter (McCarty et 

al., 1981) and thus to their soil organic-matter–water partition 

coeffi  cient (K
oc
). For organic solutes that may be present in ionic 

form within the range of environmentally relevant pH (such as 

the ethanesulfonic acid [ESA] and oxanilic acid [OXA] degra-

dates examined for this study), sorption is governed by a balance 

among the relative tendencies of the ion to engage in hydropho-

bic, electrostatic, and specifi c chemical interactions with the solid 

phase and by solution factors (e.g., pH, ionic strength, and tem-

perature) that may control the relative proportion of the ionized 

form that is present (Schwarzenbach et al., 1993).

Th is paper focuses primarily on the chloroacetanilide 

and triazine herbicides, pesticides that are among those used 

most extensively in agriculture in the USA (Kiely et al., 

2004). Th e chloroacetanilide herbicides of principal interest 

include acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-

6-methylphenyl)acetamide], alachlor [2-chloro-N-(2,6-dieth-

ylphenyl)-N-(methoxymethyl)acetamide], and metolachlor, 

which undergo transformation relatively rapidly in aerobic soil 

but much more slowly in water alone (Gilliom et al., 2006). 

Research has shown that these compounds may be transformed 

by a relatively large number of pathways in the hydrologic sys-

tem (many of them requiring microbial assistance), resulting in 

the production of at least 12 degradates for acetochlor, 22 for 

alachlor, and 21 for metolachlor (Stamper and Tuovinen, 1998; 

Lee and Strahan, 2003; Hladik et al., 2005).

Th e degradates that have been examined most extensively for 

acetochlor, alachlor, and metolachlor have been their ESA and 

OXA metabolites (see transformation pathway diagrams for the 

chloroacetanilides in Capel et al., 2008). Despite the relatively 

high frequency with which ESA and OXA have been detected 

in surface and ground water (e.g., Kalkhoff  et al., 1998; Phillips 

et al., 1999; Groschen et al., 2004; Mills et al., 2005) and the 

extensive use of their parent compounds, few published data 

seem to be available with regard to the partitioning properties or 

persistence of these degradates. Consequently, several of the K
oc

 

values for these and other chloroacetanilide degradates were esti-

mated on the basis of their chemical structures using quantitative 

structure–property relations (Capel et al., 2008). Although the 

absolute magnitudes of these estimated values are more uncertain 

than would have been the case for measured values, their relative 

magnitudes derived from quantitative structure–property rela-

tions indicate that these degradates are less strongly sorbed to soil, 

and therefore more mobile in the subsurface, than their parent 

compounds. Although little information seems to be available 

in the published literature on the reactivity of chloroacetanilide 

degradates, the high frequencies with which the ESA and OXA 

degradates have been detected in the hydrologic system indicate 

that these compounds are substantially more persistent at or be-

low the land surface than are their parent compounds.

Among the triazine herbicides, atrazine and simazine are the 

main focus of this paper, and deethylatrazine [2-amino-4-chloro-

6-(isopropylamino)-s-triazine] was the only triazine degradate 

analyzed in the study described herein. Although atrazine has 

been used and studied much more extensively than simazine, 

transformations of both compounds in the environment may oc-

cur through abiotic or microbial mechanisms (see transformation 

pathway diagrams for triazines in Capel et al., 2008). One group 

of triazine transformation reactions that seems to require micro-

bial assistance involves the nonphotochemical oxidation of one 

or both of the alkyl side chains to form deethylatrazine and other 

products that are generally less hydrophobic than their parent 

compounds (Barbash and Resek, 1996; Bayless, 2001). Frequen-

cies of detection of deethylatrazine in ground water are usually 

comparable to those of atrazine itself (Barbash and Resek, 1996; 

Kolpin et al., 2000). Th is observation is consistent with previous 

work (e.g., Winkelmann and Klaine, 1991; Kruger et al., 1993), 

demonstrating that microorganisms oxidize the ethyl group of 

atrazine (to form deethylatrazine) much more rapidly than the 

isopropyl group (to form deisopropylatrazine [2-amino-4-chloro-

6-(ethylamino)-s-triazine]).

Although numerous studies over the past four decades have 

examined the occurrence of pesticides and their degradates in 

ground water, only a relatively small number of investigations 

have considered the transport and fate of these compounds with-

in ground water fl ow systems (e.g., Agertved et al., 1992; Barbash 

and Resek, 1996 and references therein; Fenelon and Moore, 

1998; Burow et al., 1999; Tesoriero et al., 2000, 2001, 2007; 

Puckett and Hughes, 2005). Th e purpose of the study described 

herein was to assess the occurrence and fate of pesticides—par-

ticularly triazine and chloroacetanilide herbicides and their deg-

radates—in ground water fl ow systems within four contrasting 

agricultural settings in Maryland (MD), Nebraska (NE), Cali-

fornia (CA), and Washington (WA). Th e patterns of detection of 

these compounds in ground water and their fate are discussed in 

relation to (i) the physicochemical properties of the compounds 

that control their transport in the subsurface; (ii) aquifer proper-

ties, including redox conditions; (iii) the residence time (or age) 

of the ground water; and (iv) the concentrations of pesticides in 

the deepest parts of the unsaturated zone (UZ).

Methods
At each study site, wells were installed in transects along a 

conceptualized fl ow system starting in a recharge area in the 

agricultural uplands and ending in a discharge area adjacent to 

a stream (Fig. 1). Th ese transects of wells, or fl ow-system wells, 

ranged in length from 450 m (MD) to 4200 m (WA). In ad-

dition, at each site, lysimeters were installed at shallow depths 

above some of the fl ow-system wells to enable collection and 

analysis of samples to characterize the quality of water recharging 

the shallow aquifers, and one to fi ve additional areal wells were 

installed or located afi eld of the fl ow system to enable collec-

tion and analysis of samples to characterize regional variations in 

water level and chemistry. At all sites, wells were installed using 

hollow-stem auger or mud-rotary drilling techniques and were 

completed in the surfi cial aquifer within 50 m of land surface. 

All wells were constructed of 5.08-cm inner diameter PVC cas-
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ing and slotted screen (0.0254-cm slot in lengths of 0.61, 1.52, 

or 3.05 m). Length of well screens ranged from 0.6 to 1.3 m 

in fl ow-system wells and from 0.9 to 3 m in areally distributed 

wells. Typically, wells were installed in clusters of two to three, 

but the number of wells in each “cluster” ranged from one to 

eight. Th e total network consisted of 59 wells among four sites. 

More details about individual wells and the well numbering sys-

tem (Fig. 1) can be found in Capel et al. (2008).

During installation of fl ow-system wells, samples of aquifer 

material were collected from the screened interval. Samples 

from MD, CA, and WA were collected with a split-spoon sam-

pler. Samples from NE were collected using the hydraulic push 

method. Samples of sediment from selected depth intervals were 

analyzed for particle size, bulk density, iron minerals, reduced sul-

fur (pyritic sulfur and acid volatile sulfi de), organic carbon, and 

pesticides. Samples of aquifer material collected at the screened 

interval during well installation were analyzed for pesticides at 

29 wells (MD, 11 wells; NE, 1 well; CA, 9 wells; WA, 8 wells). 

Analysis was done on 67 pesticides or pesticide degradates in 

these samples and in the aqueous phase; however, analysis was 

not done on 18 compounds including the degradates of the chlo-

roacetanilide herbicides in the solid phase (Capel et al., 2008).

Seventy-nine ground water samples, of which 20 were quality 

assurance samples (replicates, blanks, or spikes), were collected 

during 2004. Th e 59 environmental samples were analyzed for 

45 parent pesticides and 40 degradates, along with nutrients, 

common ions, and selected trace elements. Quality assurance 

samples were analyzed for a subset of the environmental samples 

constituents (e.g., a single replicate was analyzed for a single 

constituent such as pesticides, nutrients, common ions, or trace 

elements). Physical properties of the water, including specifi c 

conductance, pH, temperature, and dissolved oxygen, were mea-

sured at the time of sample collection. Samples collected from the 

fl ow-system wells were analyzed for dissolved gases and for chlo-

rofl uorocarbon, tritium (3H), and/or sulfur hexafl uoride to de-

termine apparent recharge dates. Estimates of apparent age were 

Fig. 1. Cross-section views of fl ow systems showing well-nest locations at the study sites in (A) Maryland, (B) Nebraska, (C) California, and (D) Washington.
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computed using a piston-fl ow model using a single age tracer at 

the MD, NE, and CA sites. At the WA site, apparent ages were 

estimated using a multiple-tracer analysis (Green et al., 2008). 

All techniques and instruments used for sampling and chemical 

analysis complied with standard U.S. Geological Survey proto-

cols (USGS, 2007), which allowed for comparison of the data 

among the study sites. Additional information on the methods of 

sampling and chemical analysis is reported by Capel et al. (2008).

Th e pesticide degradate fraction (Eq. [1], hereafter referred 

to as “fraction”) computed for a given pesticide degradate repre-

sents the ratio of the molar concentration of the degradate (e.g., 

metolachlor ESA) [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-

methylethyl)amino]-2-oxoethanesulfonic acid] to the sum of the 

molar concentrations of its parent pesticide (e.g., metolachlor) 

and all of the n degradates (n = 2 for metolachlor and 1 for atra-

zine) of the parent pesticide for which analyses were conducted 

(e.g., metolachlor ESA and metolachlor OXA) [2-[(2-ethyl-6-

methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoacetic 

acid]. Th e fraction can therefore range from zero (degradate of 

interest not detected) to 1 (neither the parent nor any of its other 

degradates detected, only the degradates of interest). No fraction 

was calculated if neither parent nor degradate(s) were detected. 

For the purpose of calculating the fractions for atrazine and de-

ethylatrazine, when atrazine was detected without deethylatrazine 

(or vice versa), the concentration of the nondetected compound 

was set to its laboratory reporting level. Th is was done because 

the concentrations of atrazine and deethylatrazine were often 

close to the laboratory reporting levels, and the substitution gave 

more representative fractions. No such substitutions were made 

for nondetected compounds if neither atrazine nor deethyla-

trazine were detected. For the other parent compound (e.g., 

metolachlor), the molar concentrations of degradates were often 

much greater than those for the parents, so substitution had only 

a minor eff ect on the computed fraction.

Fraction of degradate i =   

                                [Degradate
i
]/([Parent] + 

n

j 1=
∑ [Degradate

j
]) [1]

Calculation of fractions for atrazine and deethylatrazine 

required “correction” of analytical results to account for sig-

nifi cant diff erences in analytical recovery for the two analytes. 

Th e median recovery of atrazine in laboratory reagent–water 

spike samples during 2004 was 104%, whereas median recov-

ery of deethylatrazine was 38%. Concentrations of atrazine 

and deethylatrazine in ground water samples were corrected 

to estimate 100% recovery using these median recoveries be-

fore calculation of the fraction of deethylatrazine.

Results

Flow Systems
Four sites in diverse agricultural landscapes in MD, NE, CA, 

and WA were selected for study (Fig. 1, Table 1). Th e sites diff ered 

Table 1. Characteristics of study sites in Maryland, Nebraska, California, and Washington.

Site Morgan Creek, Maryland Maple Creek, Nebraska Lower Merced River, California Granger Drain, Washington

Environmental setting representative of corn and 
soybean row cropping in 
the Atlantic Coastal Plain

representative of 
corn and soybean 
row cropping in the 
northern Great Plains 
and western Corn Belt

orchards, vineyards, row crops, 
dairies, and other animal 
operations typical of the San 
Joaquin Valley

representative of the complex, 
multi-crop systems found in 
irrigated agricultural settings 
of the arid western USA

Depth to water, minimum 
and maximum at time of 
sampling (m)

0–11 3–22 5–10 0–14

Mean annual precipitation (cm) 112 68.5 31.0, highly variable 18.5

Surfi cial material; recharge 
rates (cm yr−1)†

sandy loam, 31.5 loess where cultivated, 
sandy where incised, 5.2

dune sand, 42.2 stratifi ed fi ne sand and silt, 
11.9

Aquifer material sand and some silty lenses sand and gravel alluvial sediment and 
fl uvial materials

silt to gravel

Ground water age recharged within the last 
10–20 yr

shallow recharged 
within the last 10–20 yr, 
deeper up to 40–50 yr

up to 30 yr <5 to >50 yr

Agricultural cropping pattern alternating corn and 
soybeans

alternating corn and 
soybeans; irrigation 
used to augment 
precipitation shortfall

irrigated almond orchards, feed 
corn, and variety of truck crops

irrigated grapes, fruit 
orchards, and feed corn

Irrigation type and 
amount (cm)‡

none center-pivot sprinkler, 25.4 sprinkler, 107
rill, undetermined

sprinkler, undetermined
rill, 74

Pesticide, rate (kg ha−1), 
date applied‡

none atrazine, 0.90 on 9 May 
and 1.12 after planting; 
metolachlor, 0.67 on 9 
May; chlorpyrifos, 0.56 
on  5 July 

simazine, 0.25 on 23 Apr. and 
24 Dec.; 2,4-D dimethylamine 
salt, 1.9 on 23 Apr. and 0.5 on 24 
Dec.; trifl uralin, 1.0 on 16 July; 
chlorpyrifos, 1.1 on 29 June 

see Capel et al., 2008 for 
pesticide applications in 
Granger Basin

† Modifi ed from Green et al. (2008).

‡ Modifi ed from Hancock et al. (2008).
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in land use, crops grown, climate, agricultural practices, irrigation, 

geohydrologic settings, and redox conditions (Capel et al., 2008). 

Th e ground water was oxic at the MD site and generally oxic at 

the WA site, whereas the water at the NE and CA sites varied from 

oxic to anoxic. In 2004, the maximum depths to water in the four 

fl ow systems were (from east to west) about 11 m in MD, 22 m in 

NE, 10 m in CA, and 14 m in WA (Table 1). Additional details re-

garding the four sites and their environmental settings are provided 

by Fredrick et al. (2006), Gronberg and Kratzer (2006), Hancock 

and Brayton (2006), Payne et al. (2007), and Capel et al. (2008). 

Th e annual amounts of pesticides used and application rates for 

each site are also reported by Capel et al. (2008).

At the MD site, agricultural production was dominated by corn 

and soybeans, which typically are grown in alternating years, and 

small grain crops. Taken together, these comprised 60% of the pri-

mary crops (Capel et al., 2008). Of the targeted pesticides, triazine 

and chloroacetanilide herbicides were the most widely used. Th e 

ground water fl ow system at this site derives all of its recharge from 

precipitation. Here, infi ltrating water moves through the sandy 

UZ to the shallow ground water where it eventually discharges into 

Morgan Creek. During the sampling period in May 2004, depths 

to the water table varied from 11 m near recharge areas to zero (i.e., 

coincident with land surface) near Morgan Creek (Table 1). Th e 

surfi cial aquifer is primarily sandy with some silty lenses, and all 

wells were completed within the sand. Ground water age dating 

indicated that the water at the MD site is some of the youngest 

water sampled from any of the four study sites (Green et al., 2008) 

(Fig. 1A). Most of the water within this fl ow system has recharged 

within the past 20 yr. Plentiful precipitation (112 cm yr−1) and well 

drained soils contribute to the fact that the MD fl ow system was 

the only one of the four systems studied in which all of the ground 

water sampled was oxic (O
2
 > 0.59 mmol L–1 in all samples).

At the NE site, similar to MD, corn and soybeans typically are 

grown in alternating years and dominate agricultural production 

(100% of the primary crops) (Capel et al., 2008). Also similar 

to MD, triazine and chloroacetanilide herbicides were the most 

widely used of all the targeted pesticides. At the NE site, the crop 

water demand is satisfi ed primarily through precipitation; how-

ever, as is common throughout the Maple Creek Basin, ground 

water irrigation is used to off set shortages in precipitation, and one 

fi eld at the study site is irrigated with ground water. Th e primary 

regional ground water fl ow direction at this site, unlike the other 

three, does not parallel the transect of wells. Rather, the ground 

water fl ows at an angle between 70 and 90 degrees to the orienta-

tion of the transect of wells. Th e ground water fl ow system at this 

site is the deepest (about 22 m) of the four sites, and the deepest 

parts of the system underlie 7-m-thick loess deposits. Th ese de-

posits are the surface on which most crops are grown at this study 

site (Fig. 1B). Th e NE site has some of the oldest ground water of 

the four study sites. Th e water in the shallowest part of the fl ow 

system has recharged within 10 to 20 yr; however, the deeper parts 

of the fl ow system contain water that recharged in the early 1950s 

to mid-1960s. Th erefore, somewhere between the shallowest and 

intermediate-depth or deepest fl ow-system wells, a transition zone 

likely exists where the local fl ow system that moves water from the 

agricultural fi elds to Maple Creek intermixes with the upper part of 

the regional fl ow system. Th e water in this fl ow system, which was 

recharged more than 50 yr ago and could not be dated with the 

techniques used in this study, fl ows through the study site and dis-

charges at remote locations. Anoxic water was detected in samples 

from the deepest wells at sites N22 and N21 and in all wells at 

N20 (Fig. 1B), and oxic water was detected at the top of the fl ow 

system where an infl ux of recharge water from ground water ir-

rigation occurs. Consequently, the oxic area contained most of the 

atrazine and one of the two metolachlor detections (the other was 

at N20r, where infi ltration of surface water due to an increased 

hydraulic gradient during high water in Maple Creek before the 

sampling may have been the source of the metolachlor).

Th e CA site is within the San Joaquin Valley. At this site, crops 

include almond orchards, feed corn (grown on a nonrotational 

basis), and a wide variety of truck crops (e.g., vegetables and fruits 

such as strawberries). Plant water demand is satisfi ed exclusively 

by irrigation from canals carrying diverted streamfl ow or ground 

water. Th is area of CA uses a large number of pesticides, including 

insecticides and fungicides (Capel et al., 2008). Insecticides typi-

cally are sprayed aerially in orchards or applied directly to vegetable 

fi elds. Th e site chosen for the ground water fl ow system study is 

typical of areas in California dominated by deciduous orchards, 

and a wide variety of truck crops are grown in the area. Recharge of 

the ground water system is dominated by infi ltration from irriga-

tion and supplemented by precipitation. Recharge occurs primarily 

at the land surface but also as subsurface infl ow from upgradient 

areas (Gronberg and Kratzer, 2006). Th e surfi cial aquifer consists 

of alluvial sediment interspersed with fl uvial materials and overlain 

by dune sand. Th e surfi cial aquifer overlies an 18-m-thick confi n-

ing unit. Th e fl ow-system wells are open primarily in sediment 

ranging in texture from silty sand to gravel layers. Ground water 

age dates (based on estimates derived from chlorofl uorocarbon and 

sulfur hexafl uoride analyses) indicate that the water in these wells 

was recharged within the last 30 yr. Ground water conditions in 

the central part of the fl ow system (well nest C21 in Fig. 1C) were 

oxic, whereas the upper and lower parts of the fl ow system were 

anoxic. Th e likely cause of the oxic conditions is a greater rate of 

recharge in the middle of the fl ow system due to the presence of a 

fl ood-irrigated corn fi eld.

Th e WA site (Fig. 1D) is located in arid south-central Wash-

ington State. Crops grown include grapes, fruit orchards, and feed 

corn that are grown on a nonrotational basis. A large number of 

pesticides, including insecticides and fungicides, are used in this 

area of WA (Capel et al., 2008). Th e fi elds to which triazine and 

chloroacetanilide herbicides typically were applied account for 

42% of the primary crops in Granger Drain Basin (Capel et al., 

2008). Th e ground water fl ow system at this site is recharged pri-

marily by infi ltrating irrigation water delivered by canals. Meager 

precipitation (typically about 18.5 cm yr−1), most of which falls in 

winter, contributes a small portion of the total recharge (Payne et 

al., 2007). Recharge takes place in the northern part of the study 

site and along the crests of northeast-southwest trending ridges that 

dissect the watershed (Payne et al., 2007). Ground water discharge 

is primarily to small agricultural drains on the valley fl oor, although 

deeper ground water ultimately discharges to the Yakima River. 

Th e upper 10 m of the surfi cial aquifer consists of stratifi ed fi ne 
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sand and silt. In general, the underlying aquifer material is coarser 

and more permeable than the surfi cial aquifer but is spatially het-

erogeneous, ranging in size from silt to gravel. Ground water varies 

from oxic to anoxic. Th e apparent age of ground water at this site 

ranged from less then 5 yr to greater than 50 yr. Th e apparent age 

of ground water generally increases with distance from recharge 

areas and with depth in the aquifer.

Occurrence of Pesticides
Pesticides were detected in ground water (59 wells were 

sampled) and in the aquifer solids (29 sediment cores analyzed 

from the well-screen locations). Th e median of the sum of the 

concentrations of pesticides analyzed in ground water (aqueous) 

samples (fl ow-system wells only) diff ered greatly among study sites, 

with the highest concentrations detected at the MD site and the 

lowest at the WA site (MD: 35.2 nmol L–1  [N = 9]; NE: 2.14 

× 10−1 nmol L–1 [N = 12]; CA: 6.05 × 10−1 nmol L–1 [N = 12]; 

WA: <0.097 nmol L–1 [N = 13]). Quality assurance samples (repli-

cates) generally varied from about 2 to 27%. Th e largest variations 

were on the estimated constituents (e.g., those near the laboratory 

reporting level). Forty-fi ve parent pesticides and 40 degradates 

were analyzed from water samples, and 42 parent pesticides and 

25 degradates were analyzed from aquifer solids. Of this group, 

only fi ve parent pesticides and their degradates were detected 

frequently; these fi ve pesticides were from two classes: triazines 

(atrazine, simazine) and chloroacetanilides (acetochlor, alachlor, 

and metolachlor). Th e frequency of detection of these fi ve com-

pounds is consistent with that reported in ground water nationally 

by Gilliom et al. (2006). Seven pesticides or pesticide degradates 

were detected in more than 10 samples from the fl ow-system net-

work: metolachlor ESA at 29, deethylatrazine at 24, alachlor ESA 

[2-([2,6-diethylphenyl]methoxymethylamino)-2-oxoethanesulfo-

nic acid] at 18, atrazine at 17, metolachlor OXA at 14, simazine 

at 14, and metolachlor at 12. Of these seven compounds, the top 

three, and four of the top fi ve, most frequently detected com-

pounds were degradates. Other compounds detected in ground 

water included metribuzin [4-amino-6-(1,1-dimethylethyl)-3-

(methylthio)-1,2,4-triazin-5(4H)-one], acetochlor, acetochlor ESA 

[2-([2-methyl-6-ethylphenyl]ethoxymethylamino)-2-oxoethane-

sulfonic acid], acetochlor OXA [2-([2-methyl-6-ethylphenyl]

ethoxymethylamino)-2-oxoacetic acid], acetochlor/metolachlor 

ESA, secondary amide [2-([2-ethyl-6-methylphenyl]amino)-2-

oxoethanesulfonic acid], alachlor, alachlor OXA [2-([2,6-dieth-

ylphenyl]methoxymethylamino)-2-oxoacetic acid], and alachlor 

sulfi nylacetic acid [2-([2,6-diethylphenyl]methoxymethylamino)-

2-oxoethanesulfonic acid]. Although not detected in ground water 

samples, 3,4-dichloroaniline, a degradate of several phenylurea 

herbicides including diuron [N′-(3,4-dichlorophenyl)-N,N-

dimethylurea] and linuron [N′-(3,4-dichlorophenyl)-N-methoxy-

N-methylurea], was detected in one aquifer sediment sample from 

the CA study site.

Th e occurrence of parent pesticides in ground water depends 

on a number of factors, including their physicochemical proper-

ties (most importantly K
oc
 and soil dissipation half-life [t

1/2,soil
]), 

amount and rate of use, agricultural management practices, 

and amount and intensity of rainfall/irrigation. For the subset 

of pesticides used in each of the fl ow-system areas, Fig. 2 shows 

their occurrence as a function of its log K
oc
 and log t

1/2,soil
. Ten of 

the 14 parent pesticides that were detected in these four ground 

water systems fall in the upper left quadrant of the graphs (Fig. 

2), which represents pesticides that have long t
1/2,soil

 and small 

K
oc
 values, as expected. Th e remaining four were in the lower left 

quadrant, which represents pesticides that have small t
1/2,soil

 and 

small K
oc
 values.

Lysimeters, installed at shallow depths above some of the fl ow-

system wells, were sampled concurrently, or nearly so, with the 

fl ow-system wells. Th e same pesticides and pesticide degradates 

were detected in many samples from sites having a deep UZ 

lysimeter and a shallow ground water well. Common compounds 

among the UZ (Hancock et al., 2008) and shallow ground water 

samples are limited to triazine and chloroacetanilide herbicides and 

their degradates. At one site in NE, concentrations of atrazine and 

deethylatrazine in the samples collected from the lysimeters were as 

much as 100 times greater than concentrations in the underlying 

ground water. At MD, metolachlor ESA and metolachlor OXA 

were detected in the three deepest UZ locations and always at con-

centrations similar in magnitude to the underlying shallow ground 

water. Conversely, alachlor ESA only was detected in one of the 

deep UZ samples and atrazine and deethylatrazine were not detect-

ed in any of the deepest UZ samples. At the NE site, metolachlor 

ESA and metolachlor OXA were detected in all three deep UZ lo-

cations, and alachlor ESA was detected in two of the three deepest 

UZ locations. Metolachlor ESA and alachlor ESA were detected in 

the underlying shallow ground water at two of the three sites and 

were always detected together. In WA, metolachlor and alachlor 

OXA were detected in the deepest UZ sample, whereas no pesti-

cides were detected in the underlying shallow ground water. In CA, 

no pesticide detections were observed in the deepest UZ.

Seven pesticides or pesticide degradates detected in deep UZ 

samples (Hancock et al., 2008) were not detected in shallow 

Fig. 2. Occurrence of the subset of parent pesticides used in each 
of the watersheds as a function of chemical properties (A) 
Maryland, (B) Nebraska, (C) California, and (D) Washington.
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ground water samples. Th ese compounds included one insecticide 

(chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phos-

phorothioate]), two insecticide degradates of fi pronil (desulfi nyl 

fi pronil amide and fi pronil sulfone), and four herbicides (dacthal 

[dimethyl 2,3,5,6-tetrachlorobenzene-1,4dicarboxylate], prometon 

[6-methoxy-N,N′-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine], 

tebuthiuron [N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-

N,N′-dimethylurea], and trifl uralin [2,6-dinitro-N,N-dipropyl-

4-(trifl uoromethyl)benzenamine]). Two pesticides detected below 

the water table were not detected in samples from any deep UZ 

samples (3,4-dichloroaniline in sediment samples at the CA study 

site and metribuzin from water samples at the MD study site).

In ground water, atrazine or its degradation product deethy-

latrazine were detected in about one half of the wells across all 

four study areas but infrequently at the WA site. Atrazine and 

deethylatrazine were detected together in ground water samples 

from the MD and NE study sites (Fig. 3A) and more frequently 

than in water samples from the other two sites. Th is may be due 

in part to the long-term, homogeneous nature of the corn–soy-

bean cropping that characterizes these two study sites. Atrazine 

was detected in samples from all shallow fl ow-system wells at the 

MD study site but was detected in only one of six samples from 

wells deeper than 15 m. Atrazine and/or deethylatrazine was 

detected in the oldest water age dated (1949) (Fig. 3B) to recent 

and in the shallowest to deepest wells (Fig. 3C). Atrazine con-

centration generally decreased with depth or was not detected. 

Conversely, deethylatrazine was detected in all fl ow-system wells 

at the MD study site (except one) and at concentrations com-

monly one or two orders of magnitude greater than atrazine. 

At the NE site, deep wells directly beneath the corn fi eld had 

smaller concentrations of atrazine and deethylatrazine than their 

associated shallower well. At the CA site, atrazine was detected 

only in water samples from the shallowest and deepest wells of 

the cluster at the terminal end of the fl ow system, whereas de-

ethylatrazine also was detected in the sample from the shallowest 

well at the same location. Atrazine and deethylatrazine were 

detected only in two areal wells in samples from the WA site, 

both of which had detections of each. Overall, atrazine and/or 

its degradate deethylatrazine were present in most of the study 

areas, and these compounds were present in ground water that 

was old to recent and shallow to deep.

Concentrations of atrazine varied from 0.008 nmol L–1 (es-

timated; e.g., below the laboratory reporting level [Childress et 

al., 1999] of 0.0325 nmol L–1) to 5.1 nmol L–1, with the largest 

concentration in water from the areal wells at the MD study site. 

Concentrations of deethylatrazine ranged from 0.014 nmol L–1 

(estimated; below the laboratory reporting level of 0.032 nmol 

L–1) to 5.5 nmol L–1, with the largest concentrations detected in 

fl ow-system wells at the MD study site. Deethylatrazine con-

centrations ranged from 0.020 to 5.5 nmol L–1 in ground water 

samples from MD, NE, and CA in which the parent compound 

atrazine was not detected. In contrast, only one sample from the 

NE site at 0.008 nmol L–1 and one sample from the CA site at 

0.028 nmol L–1 had detectable concentrations of atrazine but no 

deethylatrazine. At the MD site, the relative frequency of detec-

tion of atrazine compared with the detection of deethylatrazine 

in the ground water was in part a function of well depth (Fig. 

3C). All other samples from the CA site containing deethyla-

trazine were from wells in the middle cluster. Atrazine was not 

detected in samples from these wells; however, simazine, which 

dealkylates to form deisopropylatrazine but not deethylatrazine, 

was detected in wells where deethylatrazine was detected but 

atrazine was not.

Metolachlor and its degradation products, metolachlor ESA 

and/or metolachlor OXA, were detected in about one half of 

all wells sampled (metolachlor, 12 detections in 59 samples; 

metolachlor ESA, 29 detections; and metolachlor OXA, 15 

detections), excluding those at the WA site. Metolachlor was al-

Fig. 3. Bivariate plots of corrected deethylatrazine relative to (A) corrected 
atrazine, (B) age of ground water, and (C) depth of screened interval 
(atrazine and deethylatrazine corrected for recovery). The laboratory 
reporting level divided by 10 (3.2 × 10−3 nmol L–1) was substituted for 
a nondetected value so the data point would plot on the log-log plot 
(A); this value indicates no atrazine was present in the sample while 
deethylatrazine was present.
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ways detected with metolachlor ESA and/or metolachlor OXA, 

excluding one sample at the NE site. When metolachlor was 

concomitant with metolachlor ESA and/or metolachlor OXA, 

metolachlor had one to four orders of magnitude smaller concen-

trations. Metolachlor, which was detected at concentrations up 

to 0.37 nmol L–1 in 64% of ground water samples from the MD 

site, was detected in 13% of samples from the NE site (including 

a sample from one well possibly aff ected by stream infi ltration) 

and in 8% of samples from the CA site. Metolachlor was present 

at concentrations that were generally two to three orders of magni-

tude less than metolachlor ESA or metolachlor OXA. Metolachlor 

ESA, with concentrations as high as 46 nmol L–1, was the most 

frequently detected compound. Whenever metolachlor was de-

tected, except for one sample from the NE site, metolachlor ESA 

also was detected. Metolachlor ESA generally was present at the 

largest concentrations in samples from the MD site, where it was 

detected in all but one sample. Metolachlor ESA was detected in 

47% of the samples from the NE site and in 75% of the samples 

from the CA site. Metolachlor OXA concentrations generally were 

smaller than those of metolachlor ESA (Fig. 4A). Metolachlor 

OXA was detected in 73% of the samples from the MD site, in 

only 7% of the samples from the NE site (even though it fre-

quently was detected in the UZ above ground water sampling 

sites [Hancock et al., 2008]), and in 25% of the samples from the 

CA site. Excluding the near-stream site at NE, most samples that 

contained more metolachlor parent compound than metolachlor 

ESA were collected from wells where the apparent ground water 

age was younger than about 1993 (Fig. 4B) and whose depths 

were less than 15 m (Fig. 4C). Overall, metolachlor ESA was the 

most common pesticide detected in water samples. When its par-

ent compound, metolachlor, was detected, with one exception, it 

always was detected with the ESA degradate.

Alachlor, whose use has diminished substantially in the last 

decade (Fig. 5A), was detected only once as the parent compound 

along with one detection each of its OXA and sulfi nylacetic acid 

(SAA) degradates; however, the ESA degradate of alachlor was 

detected in 18 of the 59 wells (31% of the samples). Most of the 

detections of alachlor ESA at the MD and NE study sites occurred 

in the same samples where metolachlor ESA was detected, and 

frequently alachlor ESA was detected with deethylatrazine. At 

the MD site, all occurrences of alachlor ESA were concomitant 

with metolachlor ESA. At the NE site, alachlor ESA was limited 

primarily to those fl ow-system wells underlying or directly adja-

cent to the corn fi eld, which also had concentrations of atrazine, 

deethylatrazine, and metolachlor ESA. Finally, acetochlor, a chlo-

roacetanilide herbicide registered for use in 1994, was probably 

detected infrequently because its use was restricted to corn, it had 

not been widely used in the study basins (Capel et al., 2008), and 

the estimated recharge dates for most wells sampled in the study 

pre-date the fi rst uses of this compound nationally. Acetochlor was 

detected in one sample from the NE site, whereas its degradates 

acetochlor ESA and acetochlor OXA were detected two times 

each—acetochlor ESA in MD and WA samples and acetochlor 

OXA in NE and WA samples.

Few concentrations of pesticides in aquifer sediment have 

been reported in the literature. Pesticides were detected in 

aquifer sediment in 10 of the 29 wells (MD: 7; CA: 2; WA: 

1). Five diff erent pesticides or degradates were detected in 

the aquifer sediment—3,4-dichloroaniline, atrazine, deethy-

latrazine, metolachlor, and simazine. Of these, atrazine and 

deethylatrazine were identifi ed only in aquifer sediment from 

the MD site. Simazine was identifi ed in aquifer sediment 

from the CA and WA sites, and metolachlor was identifi ed in 

aquifer sediment from the MD and CA sites. With one ex-

ception, all pesticides detected in aquifer sediments also were 

detected in water samples collected from the same site. At that 

one site (MD), simazine was detected in aquifer sediment but 

not in ground water; however, simazine was reported to have 

been applied to the fi eld in 2002 when corn was last grown. 

Concentrations of atrazine and deethylatrazine ranged from 

Fig. 4. Bivariate plots of metolachlor ethanesulfonic acid (ESA) as 
a function of (A) metolachlor oxanilic acid (OXA), (B) age of 
ground water, and (C) depth of screened interval. “0” indicates no 
metolachlor ESA is present while other related compounds (either 
metolachlor and/or metolachlor OXA) are present.
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0.5 to 0.7 and 0.7 to 1.8 μg kg−1 (dry wt), respectively, and 

concentrations of simazine and metolachlor ranged from 0.3 

to 1.7 and 0.4 to 0.9 μg kg−1 (dry wt), respectively. Th e single 

detection of 3,4-dichloroaniline was 0.17 μg kg−1 (dry wt).

Relations among Pesticide Concentrations and Redox 

Conditions in the Aquifer
Concentrations of seven of eight pesticides detected fi ve or 

more times in ground water were signifi cantly correlated (α = 

0.05) with two or more indicators of redox conditions in the 

aquifer (Table 2). Principal components analysis and stepwise 

logistic regression were used to explore relations among the re-

dox indicators and to identify those indicators that explained 

the greatest amount of variance in the pesticide 

data. In both analyses, apparent age, O
2
, and excess 

nitrogen gas (N
2
) were determined to be important 

indicators of the presence and concentration of pes-

ticides in these ground water systems.

Th ree distinct types of water were identifi ed at the 

four study sites on the basis of these three indicators and 

the total concentration of pesticides at each site (Fig. 6). 

Samples plotting in region I were characterized by O
2
 

concentrations greater than about 0.10 mmol L–1 and 

excess N
2
 concentrations less than about 0.076 mmol 

L–1, indicating that little or no denitrifi cation has taken 

place. Th e median age of these samples was 8 yr, the 

youngest water of the three regions on the graphs. Th e 

oldest sample in this region was 23 yr. Region I samples 

had consistently high concentrations of agricultural 

pesticides (median concentration, 14.9 nmol L–1), and 

89% contained one or more detectable pesticides (me-

dian, 4.5). Th e oldest 50% and the youngest 50% of 

the region I samples contained similar pesticide concen-

trations and similar number of detections per sample, 

indicating that aerobic degradation of pesticides is not a 

signifi cant factor in these study areas. Metolachlor and 

metolachlor ESA concentrations were slightly larger in 

the older group of region I samples and may refl ect the 

reduced loading of metolachlor after the introduction of 

S-metolachlor around 2000. Alachlor ESA concentra-

tions were also larger in the older sample group, which 

may refl ect the reduced use of alachlor since the intro-

duction of acetochlor in 1994 (National Agriculture 

Statistics Service, 2006) and, more recently, the intro-

duction of glyphosate-tolerant [N-(phosphonomethyl)

glycine] crops.

Samples plotting in region II had O
2
 concentrations 

less than about 0.03 mmol L–1 and excess N
2
 concentra-

tions greater than about 0.125 mmol L–1. Th e low O
2
 

concentrations and buildup of N
2
 gas are consistent 

with nitrate-reducing conditions in the aquifers. On 

average, region II samples were older (median age, 23 

yr) than samples in region I and ranged in age from 8 

to 45 yr. Eighty-six percent of samples from region II 

contained one or more pesticides (median, 3), which 

is similar to pesticide occurrence at sites plotting in re-

gion I. Th e median pesticide concentration among these samples, 

however, was 0.53 nmol L–1—more than an order of magnitude 

less than samples from region I. It is possible that the diff erences 

in pesticide concentrations between these two geochemically dis-

tinct regions are due to degradation under anaerobic conditions. 

Th is possibility also is supported by data for those wells plotting 

in regions I and II in which the age of the water was 15 yr or less. 

In this subset of wells, smaller concentrations of pesticides were 

detected in samples in which nitrite also was detected. Nitrite is 

an intermediate product formed during denitrifi cation (Betlach 

and Tiedje, 1981; Smith et al., 2004) and typically is unstable in 

aquifers under reducing conditions. Its presence is an indicator of 

active denitrifi cation. Th e data set is not suited to further testing 

Fig. 5. Graphs showing use of (A) herbicides in agricultural settings and (B) nitrogen 
fertilizer in the conterminous USA. Interpolations before 1982 in (A) are based on 
use data for all pesticides; interpolations from 1982–2001 use data for all herbicides.
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of this hypothesis, and it is impossible to rule out alternative ex-

planations. Smaller pesticide concentrations in older and/or more 

reduced water also could be the result of (i) the mixing of recently 

recharged waters with older water containing no pesticides and (ii) 

long-term changes in farming practices (Fig. 5A) and local changes 

in land use or crops. Despite the uncertainties, two distinct types 

of agriculturally aff ected ground water have been identifi ed among 

the four study sites. Region I contains young, oxic water with high 

pesticide concentration, and region II contains older, reduced water 

with low pesticide concentrations.

Samples plotting in region III had low O
2
 (O

2
 < 

0.10 mmol L–1), and little or no excess N
2
 was present 

(<0.12 mmol L–1) (Fig. 6). Th is group of samples also had the 

oldest median age of water among the three regions (42 yr). Only 

27% of samples in region III contained one or more pesticides. 

Samples plotting in region III were consistent with water recharged 

before the extensive use of commercial fertilizers and pesticides 

began. All four study sites have a long history of agriculture, so it is 

unlikely that any of the water was recharged before the agricultural 

development of the areas. Nationwide sales records of commercial 

fertilizer (Fig. 5B) show a fourfold increase in annual nitrogen ap-

plications since the mid-1950s. Th e lack of excess N
2
 in low-O

2
 

water indicates that no denitrifi cation had occurred in this older 

water, which is probably related to low applications of nitrogen and 

the use of traditional organic nitrogen sources (e.g., manure and 

plant material) at the time this water was recharged. Similarly, low 

concentrations and infrequent detections of pesticides are related to 

the few pesticides available on the market before the 1960s. Atra-

zine and simazine were registered in 1959 and 1958, respectively. 

Th e adoption and use of these two compounds increased substan-

tially during the late 1960s and 1970s (Fig. 5A). Other pesticides 

frequently detected in this study came on the market later—

alachlor in 1969, metolachlor in 1977, and acetochlor in 1994.

During the next 50 yr, ground water that is not currently 

aff ected by commercial fertilizer and pesticides will be replaced 

by water that does refl ect the use and eff ects of signifi cant 

amounts of pesticides, nitrogen, and other by-products of the 

modern agricultural landscape. Th e eff ectiveness with which 

the Nation’s aquifers can naturally attenuate these chemicals, 

particularly complex organic pesticides, is largely unknown.

Discussion

Occurrence and Fate of Triazines
Atrazine and its degradate deethylatrazine were the primary 

triazine compounds detected in ground water samples from each 

of the four study areas, so the discussion in this section focuses on 

these two compounds. Atrazine can be biodegraded in soils, but 

as seen from samples from this study, the parent compound and 

deethylatrazine were detected in the shallowest wells and in some 

of the deepest wells. Th erefore, for atrazine, degradation rates are 

generally slower than rates of transport. Although most degrada-

tion of atrazine probably occurs in the UZ, further degradation 

and perhaps mineralization can occur in the saturated zone.

Atrazine was applied to fi elds during the 2 yr before col-

lection at the MD and WA study sites and during the year of 

sample collection at the NE and the CA study sites. Because 

all of the study sites were in areas of long-term corn produc-

tion, it is likely that atrazine was used at all of the study sites 

for many years before the collection of samples for this study.

Th e MD and NE study sites had the greatest overall frequency 

of detection and concentrations of atrazine and deethylatrazine in 

ground water samples. Atrazine and deethylatrazine concentrations 

were comparable at the NE site and in the areal wells at the MD 

site. Samples from the MD fl ow-system wells, however, had much 

larger deethylatrazine concentrations relative to atrazine (Fig. 3A) 

and, where comparable, to those in ground water samples from 

other study sites. Deethylatrazine at the MD site was detected in 

every fl ow-system well except the deepest well at the head of the 

fl ow system and in all but one areal well. Atrazine was detected 

only in the shallowest wells and in the intermediate well at the end 

Table 2. Correlation (Spearman’s rho) between pesticides detected in ground water and indicators of redox conditions.

 No. of samples No. of detections Apparent age

Depth of screened interval 

below water table (m) Dissolved O
2

NH
3
−–N, 

fi ltered

NO
2
−–N, 

fi ltered

(NO
2
−+NO

3
−)-N, 

fi ltered

Metolachlor ESA† 59 29 0.45‡ −0.02 0.36 −0.08 −0.14 0.37

Deethylatrazine 59 24 0.49 −0.24 0.55 −0.01 −0.08 0.15

Alachlor ESA 59 18 0.01 −0.23 0.20 0.08 0.01 0.06

Atrazine 59 17 0.20 −0.27 0.12 0.09 0.12 −0.09

Metolachlor OXA§ 59 14 0.53 −0.11 0.28 −0.11 −0.14 0.19

Simazine 59 14 0.29 0.08 0.03 −0.12 0.05 0.39

Metolachlor 59 12 0.25 0.03 0.33 −0.20 −0.15 0.01

Acetochlor/metolachlor

ESA, second amide 59 5 0.21 −0.04 0.36 −0.12 −0.19 0.14

Acetochlor ESA 59 2 0.07 −0.22 0.10 −0.07 0.04 −0.08

Acetochlor OXA 59 2 0.08 −0.24 −0.13 −0.07 0.19 −0.23

Acetochlor 59 1 −0.13 0.10 −0.04 −0.05 −0.08 −0.19

Alachlor 59 1 0.11 0.15 0.04 0.31 0.19 0.12

Alachlor OXA 59 1 −0.10 −0.01 −0.05 −0.05 0.26 −0.10

Alachlor SAA¶ 59 1 0.04 −0.20 −0.08 −0.05 0.13 −0.12

Metribuzin 59 1 0.19 −0.18 0.16 0.29 −0.08 0.05

(cont’d)
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of the fl ow system, and where atrazine was detected it was pres-

ent at concentrations one to two orders of magnitude less than 

deethylatrazine (except for one areal well). At the NE study site, 

atrazine and deethylatrazine were detected predominantly in the 

water samples collected from wells within or adjacent to the corn 

fi eld. Wells that contained measurable amounts of atrazine and/or 

deethylatrazine at the NE site were located where the water table is 

the deepest below land surface. In addition, Hancock et al. (2008) 

report that atrazine and deethylatrazine were found in the deepest 

lysimeters at this site, and after precipitation or irrigation, pesticides 

quickly moved through the 7 m of loess via matrix fl ow. Just be-

neath the loess is a fi ne-grained, well sorted sand that can transport 

water readily. Th erefore, at the NE site, the movement of atrazine 

was fast enough that, although some degradation occurred, not all 

atrazine was degraded before it reached the ground water system.

At the CA study site, the UZ soil texture is primarily sand 

with a thin layer of silty sand or silt about 3 m deep. Th is deposit 

might inhibit some of the fl ow of water, but the fl ux of water 

through the UZ could be from matrix fl ow. Because the UZ 

transport is slow at this site, there is ample time within the soil 

horizon for atrazine to degrade to deethylatrazine, which was 

the predominant pesticide or pesticide degradate detected in the 

ground water. In fact, atrazine was not detected in samples from 

wells screened in the middle section of the fl ow system, whereas 

deethylatrazine was detected frequently. At the CA study site, the 

center cluster of fl ow-system wells contained oxic water, likely 

because of some small infl ux of water from the lined irrigation 

canal or infi ltration from irrigation application of surface water.

Th e degradate fraction for deethylatrazine (ratio of deethyla-

trazine to sum of atrazine and deethylatrazine; Eq. [1]) was greater 

than 0.9 (mostly degradate) for samples from the MD and CA 

study sites, whereas samples from the NE site had fractions closer 

to 0.5, which indicates relatively more parent atrazine in these 

samples (Fig. 3B). Th e fraction of deethylatrazine in ground water 

samples from the NE site tended to increase from the corn fi eld 

toward Maple Creek. Th is result indicates that atrazine and deethy-

latrazine can persist in ground water at the NE site. Furthermore, 

at the NE site the fraction of deethylatrazine in water samples from 

the fl ow-system wells tended to decrease with age of ground water 

(Fig. 3B) and with depth of screened interval (Fig. 3C). Th ere was 

little relation of the fraction of deethylatrazine to depth of screened 

interval in ground water from other study sites. Th ere was no rela-

tion of the fraction of deethylatrazine to apparent age in samples 

from wells from the MD and CA fl ow systems.

Some of the samples from areal wells at the MD site contained 

relatively more atrazine than samples from the fl ow-system wells of 

the same age and depth to screened interval (Fig. 3B and 3C). Th is 

fi nding suggests that the choice of pesticide applied to particular 

fi elds (e.g., use of atrazine or not) helps determine the amount of 

atrazine that migrates to ground water. Th e fact that most young 

samples of water from fl ow-system wells at the MD, CA, and WA 

study sites contained relatively more deethylatrazine (>80%) than 

atrazine indicates that processes occurring in the soil or UZ result 

in transformation of atrazine to form deethylatrazine. Relatively 

more deethylatrazine is formed or transported to ground water at 

the MD and CA sites than at the NE site. At the NE site, atrazine 

and deethylatrazine seem to be stable and persist for many years.

Simazine was the only other triazine herbicide that was de-

tected in ground water samples from the study sites. Simazine, 

which was used at the MD, CA, and WA study sites, was de-

tected in water samples from the areal wells at the MD and WA 

sites and in most fl ow-system wells at the CA site. At the MD 

and WA sites, simazine use was limited, and the compound did 

not reach the ground water except at localized areas. At the WA, 

Table 2. Cont’d.

Excess N
2
, gas

SO
4
− as S, 

fi ltered

Ferrous Fe, 

fi ltered Mn, fi ltered

Organic C, 

fi ltered

Specifi c UV absorbance 

at 254 nm

Acid volatile S plus pyritic S, 

solids

Ferrous Fe, 

solids

Organic C, 

solid

Metolachlor ESA† 0.06 −0.34 0.18 0.31 −0.52 0.10 −0.62 −0.49 0.35

Deethylatrazine −0.15 −0.37 0.19 0.15 −0.46 −0.02 −0.59 −0.40 0.20

Alachlor ESA 0.13 −0.19 0.23 0.27 −0.20 −0.05 −0.33 −0.11 −0.02

Atrazine 0.09 −0.07 0.24 0.36 −0.21 −0.08 −0.22 −0.13 −0.11

Metolachlor OXA§ −0.07 −0.30 0.13 0.19 −0.31 0.16 −0.51 −0.37 0.22

Simazine −0.03 0.23 −0.13 0.08 0.13 0.36 0.15 −0.09 0.11

Metolachlor −0.12 −0.47 0.16 0.11 −0.50 −0.16 −0.47 −0.20 −0.01

Acetochlor/metolachlor

ESA, second amide −0.08 −0.43 0.06 0.00 −0.38 −0.01 −0.35 0.03 0.34

Acetochlor ESA −0.12 −0.17 0.08 0.20 0.09 0.14 0.22 0.23 −0.17

Acetochlor OXA 0.10 −0.01 0.14 0.16 0.16 0.27 0.22 0.23 −0.17

Acetochlor 0.18 0.07 0.21 0.20 −0.08 0.22 NA NA −0.12

Alachlor −0.02 −0.11 −0.13 −0.05 0.05 0.11 −0.06 0.00 0.10

Alachlor OXA 0.19 0.05 −0.13 0.10 −0.22 −0.21 NA NA −0.12

Alachlor SAA¶ 0.01 −0.04 0.00 0.11 0.19 0.17 0.22 0.23 −0.12

Metribuzin 0.00 −0.02 0.19 0.08 −0.13 0.02 −0.25 −0.05 0.24

† ESA, ethanesulfonic acid.

‡ Values in italics are statistically signifi cant correlations (α = 0.05).

§ OXA, oxanilic acid.

¶ SAA, sufi nylacetic acid.
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Fig. 6. Site groupings relative to dissolved oxygen and excess nitrogen gas for (A) total pesticide concentration, (B) metolachlor ethanesulfonic 
acid (ESA), and (C) metolachlor oxanilic acid (OXA).
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site wells where simazine was detected were adjacent to vineyards 

where most of the simazine is used. At the CA site, simazine was 

detected in 9 of 11 fl ow-system wells (82%). Th e concentration 

of simazine was greatest in the shallow, upgradient wells of the 

fl ow system. Concentrations of simazine tended to decrease with 

depth and with proximity to the end of the fl ow system.

Occurrence and Fate of Chloroacetanilides
Metolachlor was the primary chloroacetanilide detected during 

the study (12 of 59 samples). Variations in the degradate fraction 

for metolachlor ESA were related to age and depth (Fig. 4B and 

4C) of the ground water (i.e., typically more metolachlor parent 

compound was detected in young and shallow water). Concen-

trations of metolachlor ESA in samples from the MD site were 

highest in samples from wells at the head of the fl ow system and 

in older, deeper water. Four samples at the MD site were clustered 

around 0.6 for the metolachlor ESA fraction (Fig. 4B), which indi-

cates slightly more than one half of the sample was degradate. Oth-

er samples from the MD site generally ranged from about 0.74 to 

0.99, indicating that most of the product detected in ground water 

samples was metolachlor degradate and not parent compound. 

At all sites, none of the samples contained more parent product 

than degradate. Th e reason for this could include the varied use of 

metolachlor on the fi eld through annual corn–soybean rotation 

and subsequent use of metolachlor on corn fi elds. Metolachlor has 

a short half-life of about 90 d in aerobic soils (Ahuja et al., 2000). 

Metolachlor had not been used on the MD fi eld for 2 yr before the 

collection of samples for this study.

At the NE site, metolachlor ESA fractions typically were 

between 0.99 and 1.0, indicating that almost no parent product 

was detected. Samples from wells near Maple Creek, however, 

had metolachlor ESA fractions of 0.00, indicating that all of 

the metolachlor detected was the parent compound. Although 

the age date of the sample from the deepest well indicates water 

>30 yr old, the presence of metolachlor (registered 1977) in the 

sample indicates a fraction of younger water. It is likely that this 

water is of recent origin and was the result of fl ood-induced gra-

dient reversals from high water in Maple Creek during a major 

storm days before the sample collection. Th e presence of only the 

metolachlor parent and neither metolachlor ESA nor metolachlor 

OXA lends support to a recent origin for this water; however, 

at the NE site the ground water fl ow direction is not necessarily 

along the fl owpath, so a direct correlation between the beginning 

and ending wells of the transect cannot be made (e.g., the hydro-

logic connection between the agricultural land at the upgradient 

wells and the riparian wells is not necessarily 1:1).

Samples from the CA fl ow system also showed a trend of 

increasing metolachlor ESA (an less metolachlor) with age. Me-

tolachlor ESA fractions ranged from 0.70 to 1.0, indicating that 

relatively little parent compound was present in the sample. Th e 

three samples containing the smaller metolachlor ESA fraction 

(0.7–0.8) were from wells at the head of the fl ow system and from 

the three deepest wells of that well cluster. Th e smaller metolachlor 

ESA fractions are at the head of the fl ow system and in a recharge 

area reveals that metolachlor has not been in the system as long as 

at most of the other well clusters (verifi ed by the age dates).

Th e proportion of metolachlor in ground water generally 

was far less than that of its degradates (Fig. 7). As metolachlor 

moves through the UZ, most of it degrades to metolachlor ESA 

and/or metolachlor OXA. At the MD site, the UZ rarely had 

concentrations of metolachlor concomitant with metolachlor 

ESA and metolachlor OXA, but at the NE, site metolachlor 

was concomitant with its degradates. Th e relative percentages 

of metolachlor present as parent compound, metolachlor ESA, 

and metolachlor OXA are evident in Fig. 7, which shows most 

samples clustered toward the tip of the ternary diagram, indicat-

ing that metolachlor ESA is the predominant constituent. Figure 

7 also shows that many of the samples from the MD site plot in 

the area of larger concentrations of metolachlor ESA and me-

tolachlor OXA on the ternary diagram, indicating that although 

metolachlor ESA is the predominant degradate, metolachlor 

OXA is still present, unlike in most of the samples from the NE 

and CA sites. Because metolachlor ESA is more persistent than 

metolachlor OXA, the ratio of metolachlor OXA to metolachlor 

ESA changes over time, so that once the chemicals are in the 

ground water, metolachlor ESA eventually becomes the domi-

nant species. Th is also seems to be occurring in the UZ just above 

the sampling depth of the shallow wells (Hancock et al., 2008).

Alachlor ESA, the third most frequently detected pesticide 

or pesticide degradate, was found in 18 of 59 ground water 

samples (31%). Although the use of alachlor largely has been 

discontinued over the past decade, its degradate alachlor ESA was 

detected frequently at three of the four study sites. Most of these 

detections were in samples from areas where corn is the predomi-

nant crop. Nevertheless, no detections of the parent compound 

alachlor, which once was commonly used on corn fi elds, were 

seen. Th erefore, the use of alachlor has waned over the years, and 

it likely was replaced, at least in part, with acetochlor (Fig. 5A). 

Consequently, over time, alachlor, which has a half-life of about 

15 d in soils (Ahuja et al., 2000), has metabolized to its daugh-

ter products—alachlor ESA, alachlor OXA, and alachlor SAA 

[2-({[N-(2,6 diphenyl)-N-(methoxymethyl)carbamoyl]methyl}

sulfi nyl)acetic acid]. Alachlor OXA and alachlor SAA were de-

tected in only one water sample each and always in concert with 

alachlor ESA. Th is fi nding suggests that alachlor ESA is the pre-

dominant degradate and persists in ground water for years. Al-

though no current health advisory exists for alachlor ESA, there 

exists a drinking water standard of 7.4 nmol L–1 for alachlor, 

which may cause potential human health eff ects (USEPA, 2006).

Results of Root-Zone Water-Quality Model Simulations
To better understand pesticide movement to the water table, 

the Root-Zone Water-Quality Model (RZWQM) (Ahuja et al., 

2000) was used to simulate the movement of metolachlor and 

two of its common degradation products—metolachlor ESA and 

metolachlor OXA—through the UZ at the MD site. Th e RZ-

WQM developed for this study was modifi ed to simulate chemi-

cal movement to 10 m below land surface (Bayless et al., 2008). 

Depths to water in the simulation ranged from 4.82 to 5 m. For 

purposes of the model, based on soil cores the soil horizon and 

the UZ consisted of the following: 0 to 2 m, sandy loam; 2 to 5 

m, loam; and 5 to 6 m, sandy loam (Fig. 8). Th e chemical proper-
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ties used for the simulation were K
oc
 and soil dissipation half-life 

(t
1/2, soil

, in days: metolachlor K
oc
 = 182, t

1/2, soil
 = 10 d; metolachlor 

ESA K
oc
 = 13.5, t

1/2, soil
 = 70 d; and metolachlor OXA K

oc
 = 17, 

t
1/2, soil

 = 50 d) (Bayless et al., 2008). It was assumed that corn and 

soybeans were grown in alternating years beginning with corn in 

year 1 (simulation year 1976). Metolachlor was applied only in 

the years that corn was planted (alternating years beginning with 

year 3 of the simulation). Th e 30-yr simulation assumed that of 

metolachlor and its degradates concentrations were equal to zero 

at the beginning of the modeled period. Th e fi rst simulated year 

of metolachlor application was 1978, 1 yr after the compound 

was registered for use. Th e metolachlor application rate was held 

constant at 2.2 kg ha−1 from 1977 through 2001 and then reduced 

to 1.4 kg ha−1 to simulate conversion to the use of S-metolachlor. 

Root-zone water-quality model was calibrated using a best-fi t sim-

ulation and sensitivity analysis of two soil transport parameters—

K
oc
 and t

1/2, soil
.

Th e simulation predicted that the degradates of metolachlor 

would be transported through the soil zone much faster and to a 

greater depth than would the parent product. Results of RZWQM 

simulations (Fig. 8) generally agree with metolachlor, metolachlor 

ESA, and metolachlor OXA values in water samples from the UZ 

Fig. 7. Ternary plot of metolachlor and metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates in the deepest unsaturated zone 
and in ground water samples from (A) Maryland, (B) Nebraska, and (C) California study sites.
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as to which product should be at a greater concentration (e.g., 

the predominant species). Th e RZWQM simulation predicts 

that after the fi rst year of metolachlor application, the total mass 

of metolachlor will have moved to a maximum depth of 0.15 m 

into the soil and that the concentrations of the total mass of me-

tolachlor at that time will remain constant throughout the simula-

tion. Metolachlor ESA and metolachlor OXA, however, will move 

about 1 m into the UZ after the fi rst year, and, after 11 yr, these 

compounds will have moved well into the soil profi le, ultimately 

reaching and exceeding the depth of the water table (5 m). In ad-

dition, concentrations of metolachlor ESA and metolachlor OXA 

will have increased to more than 100 nmol L–1 in the top 2 m of 

sandy loam. Th is “accumulation” of degradates in the upper 2 m is 

associated with the soil type because the sandier loam retains much 

of the pesticides. Within the UZ, concentrations of metolachlor 

ESA always are greater than those of metolachlor OXA, especially 

in the shallowest soil zone (0–2 m). After 25 yr of simulation, the 

metolachlor concentration profi le remains virtually identical to the 

profi le for year 3. Th e simulated distribution of metolachlor and 

its degradates corresponds with fi eld observations in this study. 

Metolachlor was rarely detected in ground water, and the simula-

tion shows nearly complete loss of the parent product in the upper 

0.5 m of the soil profi le. Th e simulated distribution of metolachlor 

ESA and metolachlor OXA in the UZ generally corresponds to 

fi eld observations from this study. At the MD site, metolachlor 

ESA and metolachlor OXA were always detected in the same 

sample, and metolachlor ESA typically was detected at larger con-

centrations than metolachlor OXA. Although the MD site was the 

simplest and best characterized of the four study sites, RZWQM 

simulation for this study generally simulated fi eld observations 

of metolachlor and its two most common degradates. Although 

actual simulated concentrations versus fi eld concentrations of the 

constituents varied, RZWQM simulated metolachlor ESA as the 

dominant degradate in the UZ.

Summary
Th e occurrence and fate of pesticides in ground water fl ow 

systems in four agricultural areas of the USA were investigat-

ed. Analyses of samples collected from a network of 59 wells 

indicate the presence of pesticides in ground water in all four 

areas—MD, NE, CA, and WA; the most frequently detected 

compounds were the degradates of the triazine and chloroac-

etanilide classes of herbicides. No insecticides were detected 

in the water samples from any of the study sites. On the other 

hand, atrazine and its degradate deethylatrazine were detected 

in samples from each study site. Furthermore, alachlor ESA, 

metolachlor, metolachlor ESA, and metolachlor OXA were 

detected in water samples from three of the four study sites.

A modifi ed version of RZWQM was used to understand 

movement and fate of metolachlor through the UZ at the 

MD study site. Results of a 30-yr simulation generally agreed 

with data for samples from the UZ. Th e root-zone water-qual-

ity model predicted that the concentrations of metolachlor 

ESA would be larger then metolachlor OXA in the UZ. Anal-

yses of samples from the MD site indicated that in most cases, 

concentrations of metolachlor ESA were greater than those of 

metolachlor OXA. Th erefore, the model seems to generally 

represent degradation of metolachlor in the UZ.

Th e proportion of metolachlor in ground water was far less 

than its degradates, and metolachlor ESA was the predominant 

degradate. Although metolachlor OXA was present in some wa-

ter samples, it seemed that the ratio of metolachlor OXA to me-

tolachlor ESA changed with time and that metolachlor ESA was 

more persistent in ground water; thus, when both were present, 

metolachlor ESA eventually became the dominant species.

Atrazine and deethylatrazine persisted in ground water at 

the NE site, whereas atrazine seemed to dealkylate to deethyla-

trazine at the MD and CA sites. Furthermore, the fraction of 

deethylatrazine tended to decrease with age of ground water at 

the NE site, which probably is a function of its total mineraliza-

tion or its limited use in the late 1950s or early 1960s. In water 

samples from the other three study sites, there was little change 

in fraction of deethylatrazine, and most of the youngest samples 

had relatively more deethylatrazine, which suggests processes 

occurring in the UZ before the transformation of atrazine to 

deethylatrazine. Relatively more deethylatrazine was formed 

or transported to ground water at the MD and CA sites than 

Fig. 8. Root-zone water-quality model predictions of pesticide 
movement to ground water at Maryland study site.
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at the NE site. At the NE site, atrazine and deethylatrazine 

seemed to be stable and persist for many years.
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